The non-catalytic N-terminal domain of ACS7 is involved in the post-translational regulation of this gene in Arabidopsis.

نویسندگان

  • Li Xiong
  • Dong Xiao
  • Xinxin Xu
  • Zhaoxia Guo
  • Ning Ning Wang
چکیده

Post-transcriptional control of the expression of the 1-aminocyclopropane-1-carboxylate synthase (ACS) gene family is important for maintaining appropriate levels of ethylene production. However, the molecular mechanism underlying the post-transcriptional regulation of type 3 ACS proteins remains unclear. Multiple sequence alignment revealed that the N-terminus of type 3 ACSs was longer than that of other ACSs. Fusing the N-terminal 54 residues of ACS7, the sole type 3 ACS in Arabidopsis, to the β-glucuronidase (GUS) reporter significantly decreased the stability of N(7(1-54))-GUS fusion protein. Among these 54 residues, residues 1-14 conferred this negative effect on the GUS fusion gene. Consistently, a truncated form of ACS7 lacking residues 1-14 was more stable than full-length ACS7 when transgenically expressed in Arabidopsis and led to a more severe ethylene response phenotype in the light-grown transgenic seedlings. Interestingly, the ACS7 N-terminus had no effect on the stability of N(7)-GUS and ACS7 proteins at the etiolated seedling stage. Both exogenous 1-aminocyclopropane-1-carboxylic acid (ACC) treatment and salt stress could rescue the levels of accumulation of N(7)-GUS fusion protein in light-grown seedlings. These results suggest that the non-catalytic N-terminus of ACS7 is involved in its own post-translational regulation. The proteasome inhibitor MG132 suppressed degradation of full-length ACS7 in vivo, but had little effect on the N-terminal truncated form of ACS7, indicating that the N-terminus mediates the regulation of ACS7 stability through the ubiquitin-26S proteasome pathway.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

The Human Thioredoxin System: Modifications and Clinical Applications

The thioredoxin system, comprising thioredoxin (Trx), thioredoxin reductase (TrxR) and NADPH, is one of the major cellular antioxidant systems, implicated in a large and growing number of biological functions. Trx acts as an oxidoreductase via a highly conserved dithiol/disulfide motif located in the active site ( Trp-Cys-Gly-Pro- Cys-Lys-). Different factors are involved in the regulation of T...

متن کامل

A type III ACC synthase, ACS7, is involved in root gravitropism in Arabidopsis thaliana

Ethylene is an important plant hormone that regulates developmental processes in plants. The ethylene biosynthesis pathway is a highly regulated process at both the transcriptional and post-translational level. The transcriptional regulation of these ethylene biosynthesis genes is well known. However, post-translational modifications of the key ethylene biosynthesis enzyme 1-aminocyclopropane-1...

متن کامل

Post-Translational Regulation and Trafficking of the Granulin-Containing Protease RD21 of Arabidopsis thaliana

RD21-like proteases are ubiquitous, plant-specific papain-like proteases typified by carrying a C-terminal granulin domain. RD21-like proteases are involved in immunity and associated with senescence and various types of biotic and abiotic stresses. Here, we interrogated Arabidopsis RD21 regulation and trafficking by site-directed mutagenesis, agroinfiltration, western blotting, protease activi...

متن کامل

Isolation and molecular characterization of the RecQsim gene in Arabidopsis, rice (Oryza sativa) and rape (Brassica napus)

In any organism that reproduces sexually, DNA Recombination plays vital roles in the generation of allelic diversity as well as in preservation of genome fidelity. Genome fidelity is particularly important in plants because mutations occurring during the development of flowering plants are heritable and can be passed onto the next generation. One of the gene families that play crucial roles in ...

متن کامل

N-Terminus-Mediated Degradation of ACS7 Is Negatively Regulated by Senescence Signaling to Allow Optimal Ethylene Production during Leaf Development in Arabidopsis

Senescence is the final phase of leaf development, characterized by key processes by which resources trapped in deteriorating leaves are degraded and recycled to sustain the growth of newly formed organs. As the gaseous hormone ethylene exerts a profound effect on the progression of leaf senescence, both the optimal timing and amount of its biosynthesis are essential for controlled leaf develop...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Journal of experimental botany

دوره 65 15  شماره 

صفحات  -

تاریخ انتشار 2014